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$ Zentralinstitut fur Kernforschung Rossendorf, 8051 Dresden, PSF 19, East Germany 
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Abstract. A perturbation theory on the basis of spectrum generating algebras is developed. 
It offers several possibilities for splitting the algebraically formulated problem into an exact 
solvable one and a perturbation of it. Different conditions for the choice of the correspond- 
ing parameters are discussed. The simple charmonium potential V = -Z/  r + A r  and the 
potential of the quadratic Zeeman effect V =  - l / r +  y 2 ( x 2 + y 2 )  are used as examples. 
Perturbation series with improved convergence properties are obtained. 

1. Introduction 

In the last few years many papers dealing with the calculation of large-order perturba- 
tion coefficients have been published. Since the classical Rayleigh-Schrodinger ( RS) 
perturbation theory in general involves infinite sums over intermediate states (an 
important exception is the harmonic oscillator as the unperturbed problem), special 
methods to obtain exact expressions for the perturbation coefficients are needed. Some 
of these methods are the logarithmic perturbation theory (see e.g. Dolgov and Popov 
1978, 1979, Aharonov and Au 1979, Eletsky et a1 1981, Turbiner 1984), hypervirial 
perturbation treatments (e.g. Lai 1981, 1983), the algebraic perturbation theory (AFT) 
using spectrum generating algebras (SGA) and dynamical algebras (e.g. Bednhi 1973, 
t i i e k  and Vrscay 1977). The resulting perturbation series are in most cases non- 
convergent but only asymptotic (see, e.g., Killingbeck 1977). Therefore special tech- 
niques are needed to sum up the series such as the Pad6 approximation (Baker 1965) 
or the Bore1 and Pad6-Bore1 summation (Avron 1981, Popov and Weinberg 1982). 

Recently Feranchuk and Komarov (1982) developed a modified perturbation theory 
for the anharmonic oscillator V = x2 + Ax4. Their operator method leads to very good 
results for lower orders. The operator method can easily be translated into the language 
of the harmonic oscillator o(2, ~ ) - S G A  and in these terms generalised to other problems, 
which can be solved with SGA. This translation has been done in a letter by Gerry 
and Silverman (1983). With reference to the AFT using SGA we call this method the 
modified algebraic perturbation theory (MAFT). Applying it to the Coulomb problem 
with a funnel-like perturbation potential V, = Ar, they calculated the energy eigenvalue 
of the ground state up to the second order and obtained, for relatively small A, very 
good results. 

In the present paper we calculate higher orders of MAPT for V = - l / r +  Ar. It turns 
out that the resulting series is not convergent but merely an asymptotic one (at least 
for not very small A ) .  By applying the Pad6 approximation we show that it has good 
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summation properties. Furthermore we extend this method by taking advantage of 
the additional possibilities to divide the operator in the SGA approach into an un- 
perturbed one and a perturbation. This considerably improves the convergence proper- 
ties. MAPT using the SGA of the Coulomb problem is also applicable for pure polynomial 
potentials without a Coulomb term. As an example we use the potential V =  Ar. 

For the Coulomb problem the SGA can be embedded into the larger dynamical 
algebra 0(4,2). One representation of this algebra contains the components xi of the 
position vector r. Therefore non-central-symmetric perturbations can be expressed by 
representation operators. We demonstrate the applicability of the modified algebraic 
perturbation theory to non-central-symmetric perturbations by using the Zeeman 
problem. 

2. The algebraic solution of the Coulomb problem and the algebraic perturbation 
theory (APT) 

In this section we repeat briefly the known solution of the Coulomb problem with the 
help of the o ( 2 , l )  SGA. For details see, for example, Cordero and Ghirardy (1972) 
or BednPi (1973). The operators 

T o = r . p . p / 4 + r ,  (2.1) 

Li = &ijkXjPk i, j ,  k = 1 ,2 ,3  (2.2) 

Tl = r * p * p /4  - r, T2 = r - p - i 

form a unitary representation of the algebra o(2, 1)@0(3). The corresponding scalar 
product is 

( u , u ) : = ( u , ; u )  1 =I u*(r)-u(r)d3r .  1 
r 

This reducible representation decomposes into a direct sum of irreducible ones D+( rp)O 
D , ,  with rp = - I -  1 and I = 0 ,1 , .  . . . A standard basis [ I ,  n, m )  for these irreducible 
representations can be chosen to have the properties 

L21 I ,  n, m )  = I( I + 1)1 I, n, m) 

TJI, n, m ) = [ ( n f I ) ( n * I f l ) ] ” 2 ~ I ,  n * l ,  m )  

w i t h T , = T l i i T 2 , n = I + 1 + s , s = 0 , 1  ,..., m=-I,  . . . ,  +I.  TheactionofL,=L,*iL, 
on II ,  m, n )  is the usual one. In the following we write sometimes simply In )  instead 
of I I ,  n, m). 

After multiplying the Schrodinger equation for the Coulomb problem by r it can 
be expressed by the operators (2.1) in the following way 

-En)+, =[(To+ TJ-3Efl(To- TJ-lIILfl. (2.5) 69, = r ( l  - r-’ 2P 

Because of the relation 

exp(i.ST2)(To* exp(-i.ST2)=x*k(T,,* x =e-’ >.o k c  N 
( 2 . 6 )  
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by a tilting of (2.5) with S, = exp(i9TJ and choosing exp(-219) = - $ E  the coefficient 
of T, can be made zero: 

4, must be an eigenvector of To and therefore we get as a result the well known energy 
spectrum E,=-1/(2n2)  ( n = I + l + s ;  I=O,l,  . . . ;  s=O, l ,  ... ). 

At this point it is easy to see how APT can be developed if the perturbation V, is 
a polynomial one of r (see, e.g., Bednii 1973). The additional term ArV,(r) in (2.5) 
can be expressed as a polynomial in (To- T,). After 'tilting' by S, making a power 
series ansatz 

e'&, := (s,es;')s,$, = [ ( - ~ E , ) ~ / ~ T ~ -  i]$,  =o. 

"=O "=O 

and expanding $v in terms of the states In) the coefficients E ,  and $, = Z, biln) can 
be calculated successively according to the known action of To and TI on In). 

In contrast to the Rayleigh-Schrodinger (RS) perturbation theory on the basis of 
the original 'untilted' Schrodinger equation each term E ,  is directly and exactly 
calculable in the form of finite sums over intermediate states. No integration over the 
continuous spectrum has to be done. Nevertheless both the methods concern the same 
series expansion. 

3. Modified algebraic perturbation theory for the Coulomb problem with polynomial 
perturbation. Case V,  = Ar 

3.1. Theory 

We consider as an example the problem H = Ho+ V, = i p 2 - Z /  r + Ar. The generalisa- 
tion of MAFT to other polynomial perturbations is straightforward. The starting point 
is also the tilted Schrodinger equation 

A simple calculation using (2.1) and (2.6) yields an expression for e' which can be 
written as e"= go+ e', with 

-.. 
e$ = S,r(;p2 -Z / r+  A r  - E)S; '$  = 0. 

io( E, x, Pi) = ( x - E / 2x)  To - ZP, + V d  

e', ( E, x, P, ) = ( x + E / 2x)  TI + Z ( PI - 1 ) + vd,p + V" ff 

(3 .1)  

(3 .2)  

where 

V d  = A,(3P2Ti- P3L2)/2 

Vd,p = A,[3( 1 - P2) T i  - ( 1  - P3) L 2 ] / 2  (3.3) 
V"'=A,[(T$+ T?)/4- TOT,- TITO]. 

The parameters x and Pi ( i  = 1 ,  2, 3 )  can be chosen freely. 
With the introduction of a formal perturbation parameter x in e": 

e'( x ,  x, Pi) 6 = [ io( x, Pi) + xe', ( x, Pi)] = 0. (3.4) 
The expansion of E ( % )  and G(x): 

E ( x ) = Eo + x E ,  + . . . E ( l )  = E 
(3.5)  G( x ) = Go + xG,  + . . . G ( 1 )  = G 
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yields a system of equations for the determination of E,, and 4" by comparing the 
coefficients of equal powers of x :  

O =  e ' O ( ~ 0 ,  X, Pi160 ( 3 . 6 ~ )  

O =  e ' o ( ~ O 3  X, P i I 4 v  + e'I(0, X, P i I 6 u - l  

It can be solved successively by expanding 6" as GV = Z, b,"ln). The splitting (3.4) is 
done in such a way that the new perturbation gl contains all off-diagonal (regarding 
the basis states In)) operators, i.e. T,  and the off-diagonal part of V. The diagonal 
part of V and the constant term 2 are shared among CO and e', with free parameters 
Pi. One vital point of MAPT is this degree of freedom in the splitting. 

In APT the term (x  + E/2x)  TI is contained in the unperturbed operator. Therefore 
x +  E/2x  must vanish in the zeroth order and x becomes x = (-E0/2)''2. By contrast, 
in MAPT even x is a free parameter which can be adjusted together with P, to improve 
the properties of the power series. From the following conditions the combinations 
al-bl ,  a2-bl and a2-b2 are used. 

( a l )  The parameters Pi are fixed in such a manner that e'' contains only non- 
diagonal terms of e' (all Pi = l) ,  or 

(a2) they are fixed by minimising Z:=, (EN-") '  for a large value of N and a small 
one for p. 

(b l )  x is obtained from Eo(x, P, = 1) +min. 
(b2) x is determined by minimising Z:=, ( E N - y ) 2 .  
Condition b l  is a criterion for obtaining a zero-order wavefunction of the form 

S;'ln) which minimises the energy expectation value. Because of (3.2), (2.4) and 
6 0 -  In): 

~ = ( n l e ' ~ ( x ,  E ~ ,  P i = l ) l n ) = ( n l i 0 + e ' , I n )  

= (nlS,r( FI - Eo)S;'ln) 

= (S;'nl(H-E,)S;'ln) 
and therefore 

Eo(x) = (s; 'nlW;'n)/(nln),  

so that Eo( x)  represents the energy expectation value. 
The choice of Pi according to a1 is natural in the sense that one tries to put as 

much information as possible in the unperturbed problem. Gerry and Silverman (1983) 
used this criterion. 

Condition a2-b2 is based on the idea that, for a series in which the contributions 
of consecutive terms ( E N - + ,  . . . , E N )  are small, the neighbouring terms should also 
have small values only. So, a series with improved properties is obtained. Although 
these arguments have no strong justification, the method gives satisfactory results, as 
shown in 0 3.2. 

An alternative to the series determined from the above conditions for fixed N is 
the computation of the sequence E(o,,  E( l ) ,  . . . , E ( K ) ,  . . . 
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where x and Pi are determined at each order K with N = K .  This can be qualified as 
an ‘order dependent parameter adjustment’. For comparison with other methods it is 
useful to re-express the equation (3.4) in physical coordinates. With the abbreviations 

Ho = $ p 2  - ZP,/xr 
H, = Z( PI - l)/xr + ( A/x3) r 

A 
8x r 

=a( p * p -4) +y [P,L’ - 3 ~ , ( r  - r ~ * / 4 ) ~ ]  

H3 = ( p  * p - 4) 

[ Ho + %HI + ( x - 1 )  H2]+ = ( E/x2)[ 1 - ( x - 1)H3] +. 
the eigenvalue problem 

(3.8) 
appears. 

This complicated expression shows that, besides the operators p 2  and l/r, r and 
powers of these operators also occur in the partition between the unperturbed problem 
and the perturbation. If we simplify this expression by setting P3 = P2 = 0, Z = 1 and 
cancelling the terms ( p  - p - 4) in H I  and H3 (this corresponds to including (x + E/2x) TI 
in e’, instead of in gl), we obtain 

[ $ -9 + x (7 P, - 1 + Ar) ] CC, = E+. 
(3.9) 

This is exactly the partition investigated by Killingbeck (1981). As a condition for the 
free parameter PI he used the criterion 

(3.10) 

and calculated the elements E, using a hypervirial theorem. 
It is interesting that the work of Killingbeck with (3.9) replaced by E N  = 0 can be 

shown to be a special case of the order dependent method (ODM) (Seznec and Zinn- 
Justin 1979). From scaling considerations of (3.9) it follows 

E(A, 1 ,  l ) =  E(A) 
and by some algebraic manipulations 

1 m  

( 3 . 1 1 )  

(3.12) 

P = A/PI(Pl - I ) ,  7 = ( P, - 1 )/ P, . 
Truncating now the series at order N and choosing p N  as a zero of P N  we obtain a 
sequence of partial sums E(Nj:  

(3.13) 

Because of A =pfl/(l - T ) ~  the series (3.12) can be interpreted as a result of an 
adjustable change of the variable in the expansion of E(A). We have not investigated 
the convergence of (3 .13)  analytically, but the numerical results indicate the divergence 
of the sequence, at least for large values of A. In the general case (3 .7)  a rescaling like 
(3.10) seems not to be possible so that it cannot be considered as a variant of ODM. 
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3.2. Results 

For the parameter choice according to conditions al-bl  and the states with n = I +  1 - 
we have calculated the first terms E ,  explicitly 

Eo = 2x ( x - Z /  n ) + xA, (2 n + 1 ) 

E?= -xA:(fn+1)/[2f(n+2)] 

E 1 = E 3 = 0  

with 

f( n’) = (x - E0/2x)n’- Z + A,(3 n ”  - I (  1 + 1))/2 

and x > 0 is a solution of 

2nx3-Zx2 = A(2n2+ n ) / 8 .  

(3.14) 

(3.15) 

For the higher-order terms and the general case of Pi and x arbitrary numerical 
computations with a FORTRAN program had been carried out. Figure 1 represents the 
behaviour of some variants of the MAPT series for the Z = 1 ground state. In table 1 
we compare the corresponding energy values with the results of a numerical integration 
of the Schrodinger equation. It can be seen from the figure that the properties of the 
series improve if we go from the conditions al-bl  over a2-bl to a2-b2. For Pi = 1 the 
series is strongly divergent. However, the value of the series truncated at the order of 
the smallest magnitude is accurate up to an error of less than one per cent. This order 
is always 4 for A 3 1.0. Perhaps this is connected with the fact that E3 is exactly zero, 
according to (3.14). 

have shown that the obtained parameters Pi and x vary strongly with N and p, if 
these numbers are small. Additionally, the convergence properties are unsatisfactory; 
it happens that the desired terms are small in magnitude and the neighbours are very 
large. Relatively stable results can be obtained when N b 20 and p > 3. Also the 
behaviour of the corresponding series at higher orders is good and improves with 
increasing N. For instance the term E,, for A = 100, p = 5 and N = 20, 30,40 and 50 
has the values 5 x 4 x lo-’, 3 x and 5 x lo-’ respectively. Table 1 and figure 
1 contain the case N = 40, p = 5. Because the series becomes an alternating one for 
higher orders, we have represented E,,,, + El,/2 in table 1. 

In the case a2-b2 the figure shows no evidence for a divergence of the series. We 
have also tested the order dependent parameter adjustment (3.7) up to order N = 50 
with increasing accuracy (for A = 100: IE(50, - El = 1.4 x On the contrary, our 
numerical results of ODM (3.13) indicate a divergence of this method for large A. For 
instance for A = 100 and N =20, 30, 40, 49 the error El has the values 0.1, 0.3, 
0.8 and 2.1, respectively. The results of all methods improve with decreasing A. 

One reason for the good properties of MAPT is perhaps the fact that the unperturbed 
operator in this method contains a term proportional to r which can reflect the behaviour 
of the problem for r + CO correctly (see (3.8)). 

One way to use the higher-order terms of a divergent series is to form Pad6 
approximants (PA) (see, e.g., Baker 1965). We have calculated the [9,9] and [9,10] 
PA of our MAPT series (conditions al-bl)  and for comparison the approximants also 

Our tests of the condition a2 combined with b l  or b2 (minimising Z;=, 
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V 

Figure 1. Magnitude of the contribution E, in the vth perturbation order of the MAPT. 
Potential V =  -l/r+Ar, A = 100, ground state. 

condition al-bl  I 0 E , < O  
E,>O 

condition a2-bl; N =40; + = 5 
0 E,<O 
0 E,>O 

condition a2-b2; N = 40; p = 5 .  I A E,<O 
A E,>O 

starting from the ordinary Rayleigh-Schrodinger ( RS) perturbation series (Privman 
(1981)  gives the coefficients up to the 20th order). The PA of our series give, in contrast 
to those of the ordinary PT, even for large values of A the exact (numerical) results to 
several digits (see table 1) .  We must remark, however, that our series cannot be a 
Stieltjes series, because the [ N, NI and [ N, N + 13 approximants are not lower and 
upper bounds of the exact value. 

Table 2 contains the corresponding results for the excited levels n = 2,  1 = 1 and 
n = 2 ,  1 = 0. The perturbation coefficients of the RS series are obtained here from a 
modification of a program given by Killingbeck (1983).  

The numbers show that MAPT provides energy values with a good precision also 
for high values of A, i.e. for large perturbations of the original problem. This is 
connected with the fact that this method is applicable for Z = 0 (pure polynomial 
potential without a Coulomb term), too. From (3.15) one obtains 

x 3 =  ( 2 n  + 1 ) A / l 6  

and from (3 .14)  for the ground-state energy up to the fourth order 
4 

E(4, = E, = 5 . 6 5 6 4 ~ ~  = 1.853A 2/3. 
,=O 

This should be compared with the exact value (obtained from the tables of the Airy 
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function, see Abramowitz and Stegun (1965)) of 

E = 1.8558A2/3 

i.e. the relative error is about 2%. It is remarkable that our expansion yields the exact 
scaling behaviour E - A 2 l 3  in each order as an inspection of (3.6) shows. 

4. Extension to non-central-symmetric perturbations: the Zeeman problem 

There has been a growing interest in the past few years in the Zeeman problem of 
high magnetic fields (see, e.g., Garstang 1977). One of the main motivations came 
from astrophysics (high magnetic fields on neutron star surfaces) and the other from 
solid state physics (large effective magnetic fields for excitons in solids). Therefore 
we choose for a non-central-symmetric example of MAFT the Coulomb problem in a 
magnetic field: 

(4.1) H = '  2 - r - ' + 1  2 2P 8 Y (x2 + Y 2 ) .  

Here a trivial term proportional to L, is omitted. 
In order to express the Hamiltonian (4.1) by representation operators, we must 

extend the representation (2.1) and (2.2) of o(2, 1 )00(3)  to one of the larger algebra 
0(4,2). Additional operators are (see, e.g., BednPi 1973): 

Together with the operators (2.1) and (2.2) they form an irreducible, unitary representa- 
tion of 0(4,2) with the representation space generated by the states In, I ,  m )  ( n  = 
0,1, .  . . ;  z=o, 1, .  .., n - 1; m = -1,. . . , I ;  see (2.4)) and the scalar product (2.3). The 
action of the operators (4.2) on the states are known as well as their commutation 
relations. From one of the commutation relations: 

[ T 2 ,  B3 i A3] = *i(B3 * A3)  

follows 

S x ( B 3 i  A3)kS;' = x * ~ ( B ~ *  A3)k. 

This is analogous to (2.6). 

e ' = S , r ( H - E ) S ; '  

Now we can write the tilted Schrodinger equation e'$ = 0 with 

In this paper we only consider the ground state and a partition of e'in a new unperturbed 
operator go and a new perturbed one e', according to the conditions a1 and bl in 0 3, 
i.e. e', contains only non-diagonal (on the states In, I, m ) )  operators. Excited states and 
other partitions of e' are treated in a further paper. 
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Table 3. Energy values of the Zeeman ground state for various y. The abbreviations are 
the same as in table 1. 

Y 0.5 1 10 100 

Literature ( i )  
(ii) 

( i i i )  
(iv) 

M A I T  E ,  
Eo + E2 

MAPT+PA [4,4] 
k 8 1  

RS + PA 

-0.331 16 
-0.447 237 -0.331 66 
-0.447 210 538 
-0.443 36 -0.3087 
-0.447 73 -0.3339 
-0.447 2103 -0.331 145 
-0.447 2105 -0.331 165 
-0.4473 -0.3400 

-0.331 168 896 

46.210 

3.2287 46.203 
3.2522 46.210 
4.273 62.17 
3.368 50.21 
3.268 47.16 
3.259 46.75 
0.065 0.08 

(i) Simola and Virtano (1978), numerical self-consistent calculation. 
(ii) Praddaude (1972), diagonalisation of H in a basis with cylindrical symmetry. 

(iii) Galindo and Pascual (1976), special variant of PA based on the RS series. 
(iv) Le Guillou and Zinn-Justin (1983), summation of the RS series with order dependent mapping. 

Table 3 contains our results together with probably the best available values from 
some other authors. Since our series diverges rapidly for large values of y we have 
only listed Eo and Eo+ E2 ( E ,  = 0). The higher terms are used in forming PA. For 
comparison we also list the PA formed with the ordinary perturbation series (the 
coefficients of which we have from Avron er a f  (1979)). 

It can be seen that the PA from the MAPT series, in contrast to those of the ordinary 
series, also gives reasonable results for large y. They are less accurate than those of 
Le Guillou and Zinn-Justin (1983) and for y = 100 also less accurate than those of 
Galindo and Pascual (1976). This is connected with the fact that Galindo and Pascual 
have used the asymptotic behaviour of E (  y )  for y -$ cc as an additional input. We 
have not aspired to attain extreme accuracy; rather we have tried to demonstrate the 
applicability of our method. Thus we calculated our series only up to the 18th order 
contrary to Le Guillou and Zinn-Justin who used the first 62 coefficients of the 
perturbation series. Moreover, we have not yet used the additional freedom for the 
splitting of e' in Bo and e', as has been done in the case of central-symmetric perturba- 
tions. A further improvement of the series should be reached by taking advantage of 
the additional freedom. 

5. Summary and conclusions 

Using the Coulomb problem with additional potentials V, - r (simple charmonium 
potential) and V, - x2 + y 2  (quadratic Zeeman effect) the following have been demon- 
strated. 

(i)  If a quantum problem is represented by o(2, ~ ) - S G A  operators or operators of 
a larger algebra containing o(2,  l ) ,  various splittings of the eigenvalue problem I?$ = 0 
in an unperturbed and a perturbed one become visible. They are expressed by an 
additional parameter Pi and also depend on the tilting parameter x. 

(ii) The corresponding perturbation theory can be explained by purely algebraic 
operations and therefore can be realised easily on a computer. For this reason very 
high orders of the perturbation series are calculable. 
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(iii) By an appropriate choice of the tilting parameter x and the splitting parameter 
Pi the method yields good results for higher orders. As a rule the resulting series is 
not convergent but is only an asymptotic one. 

(iv) If the perturbation series itself is too unsatisfactory (e.g. for Pi = 1 )  PA improves 
the results essentially also in those cases in which the PA of the ordinary perturbation 
series fails. 

The question of whether there exist parameters Pi and x for which the series is 
convergent (the letter of Fernhdez and Castro (1982) indicates this) is open. An 
analysis analogous to that by Halliday and Suranyi (1979) for the anharmonic oscillator 
(in the context of creation and annihilation operators) should solve this problem. 

The MAPT is applicable to other polynomial perturbations of the Coulomb problem. 
Examples of renewed interest are the Stark effect and crossed electric and magnetic 
fields. The potential V = e-"r as an example for a non-polynomial problem can be 
handled by expanding it in a Taylor series and using A as a perturbation parameter. 

On the other hand, we can start from other problems exactly solvable with SGA 

such as the relativistic Coulomb problem of spinless particles (Klein-Gordon equation) 
or the dyonium (Barut and Bornzin 1971). Polynomial perturbations of these problems 
can also be treated along the same lines. 
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